Technical data sheet Clictoop 63 – 127 mm

1. Manufacturer

Egli, Fischer & Co. Ltd. Gotthardstrasse 6 P.O. Box 8022 Zurich Switzerland

2. Product description

One-piece, self locking plastic pipe clamp for the exterior and indoor area

3. Application areas

- **Plumbing trade**
- **Chemical industry**
- Electrical installations (tubular cable protection)
- Sanitary installation
- Swimming pools

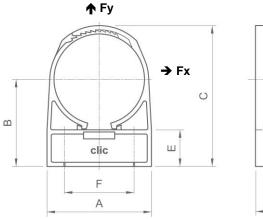
4. Features

- Locking system without additional screws
- Very high dynamic load
- Very high stress corrosion crack stability
- Very low moisture absorption
- Chloride- and weather resistant
- Clamping range 63 127 mm (2,48" to 5")
- Mounting with metrical or wood screws
- Approved by: KIWA®, UL® and IAPMO R&T/UPC®

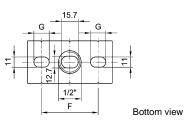
5. Technical data

Material guality Polyamide PA 12 Density at +20 °C $1,01 \text{ g/cm}^3$ Elongation at vield 12 % **E-Modulus in tension** 1100 MPa Water absorption at 23 °C 1,50 % Moisture absorbtion (23 °C / 50 % r.F.) 0,50 % Shore hardness D 70 32 kV/mm **Disruptive strength** Weather proof Mounting temperature down to -25 °C Maximum service temperature short term +150 °C Maximum service temperature long term +90 to +110 °C Flammability Calorific / energy value 34 kJ / gram Impact value (Charpy, +23 °C) 7 Impact value (Charpy, -30 °C) 6 Halogen Petrol, diesel, oil resistant Corrosion resistant Chloride salt resistant UV Standard colours **Special colours**

-40 °C up to +110 °C HB according to UL 94 halogen free as per IEC 754-2 resistant ISO 4892-2 dark grey (RAL 7001) on request

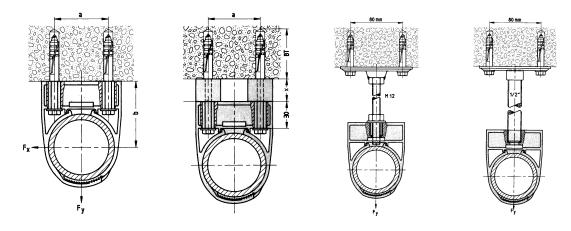

6. Product data

6.1 Product choice


Тур е	St	eel	Copper	Cast iron	PE	PVC	Cable ducts metric measures	Coaxial cable	Certification		Breaking load [N]	
	mm	inch	mm	mm	mm	mm		inch	UPC	UL	Fy*	Fx*
63					63		63		✓	✓	1800	1000
71	76,1	2 1⁄2"	76	78	75	75			✓	✓	2200	1300
80	88,9	3"	89						✓	✓	2600	1600
90					90				✓	✓	3000	1900
101			108	110	110	110			✓	✓	3500	2200
113	114,3	4"	114		125	125			✓	✓	4000	2500

* with 2 screws DIN 571 at +20 °C, safety factor must be considered!

6.2 Technical information



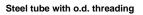
Clamping range [mm]		Α	В	С	D	E	F	G	Breaking load [N]	
min.	max.	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	Fy*	Fx*
63	71	78	72	115	40	31	52	11	1800	1000
71	80	87	77	124	40	31	58	15	2200	1300
80	90	98	83	136	40	31	66	16	2600	1600
90	101	110	89	148	40	31	76	16	3000	1900
101	113	124	96	163	40	31	86	17	3500	2200
113	127	139	105	180	40	31	102	17	4000	2500
	min. 63 71 80 90 101	min. max. 63 71 71 80 80 90 90 101 101 113	min. max. [mm] 63 71 78 71 80 87 80 90 98 90 101 110 101 113 124	min. max. [mm] [mm] 63 71 78 72 71 80 87 77 80 90 98 83 90 101 110 89 101 113 124 96	min.max.[mm][mm][mm]637178721157180877712480909883136901011108914810111312496163	min.max.[mm][mm][mm][mm]6371787211540718087771244080909883136409010111089148401011131249616340	min.max.[mm][mm][mm][mm][mm]63717872115403171808777124403180909883136403190101110891484031101113124961634031	min.max.[mm][mm][mm][mm][mm][mm]637178721154031527180877712440315880909883136403166901011108914840317610111312496163403186	min.max.[mm][mm][mm][mm][mm][mm][mm][mm]6371787211540315211718087771244031581580909883136403166169010111089148403176161011131249616340318617	min. max. [mm] Fy* 63 71 78 72 115 40 31 52 11 1800 71 80 87 77 124 40 31 58 15 2200 80 90 98 83 136 40 31 66 16 2600 90 101 110 89 148 40 31 76 16 3000 101 113 124 96 163 40 31 86 17 3500

* with 2 screws Ø 8 mm DIN 571 at +20 °C, safety factor must be considered!

6.3 Mounting examples

6.4 Accessories

....



TILCA Anchor bolt

CLIC spacers

Steel bar with metric threading

CLIC flange

7. Chemical resistance

Material	Concentration	Resistance at +23 °C	Material	Concentration	Resistance at +23 °C	
Acetic acid		••	Milk		•••	
Acetone		•••	Mineral oil		•••	
Acetylene		•••	Naphthaline		•••	
Aluminium salts	201100110	•••	Nitric acid		0	
Ammonia	aqueous	•••	Nitrobenzene			
	aqueous	••	Oils		•••	
Amylacetate Aniline		•••			•••	
		•••	Oleic acid		-	
Antifreeze		1	Oleum		0	
Benzene		•••	Oxalic acid		•••	
Benzine		•••	Oxygen		•••	
Benzyl alcohol		•	Ozone		•	
Bromine		•	Paraffin oil		•••	
Butane		•••	Perchlorethylene		•••	
Butanol		•••	Petroleum		•••	
Carbon tetrachloride		••	Petroleum ether		•••	
Caustic potash	10%	•••	Phenol		•	
Caustic potash	50%	•••	Potash		•••	
Chlorbenzene		•	Propane		•••	
Chlorine		0	Pyridine		•••	
Chloroform		•	Salicylic acid		•••	
Citric acid		••	Sea water		•••	
Copper sulphate		•••	Silicon oils		•••	
Cresol		0	Soap suds		•••	
Decalin		•••	Soda	10%	•••	
Eatible fat		•••	Soda	50%	•••	
Engine oil		•••	Sodium chloride	saturated	•••	
Ethanol		•••	Sodium hydroxide	10%	•••	
Ether		•••	Sodium hydroxide	50%	•••	
Ethyl acetate		•••	Sodium silicate		•••	
Ethylene oxide		•••	Sodium sulphate	concentrated	•••	
Fats		•••	Starch		•••	
Fluorine gas		•	Stearic acid		•••	
Formaldehyde		••	Stearin		•••	
Formic acid	concentrated	•	Styrene		•••	
Frigen	liquid F12	•••	Sulphur dioxide		••	
Frigen	liquid F22	•	Sulphur dioxide	10%	••	
Fuel		•••	Sulphuric acid		•	
		•••		concentrated	•••	
Glycerine		1	Table salt			
Glycol		•••	Tallow		•••	
Heating oil		•••	Tartaric acid		•••	
Heptane		•••	Tetralin		•••	
Hydraulic oil		•••	Toluene		•••	
Hydrochloric acid	1%	••	Transformer oil		•••	
Hydrochloric acid	10%	•	Trichlorethane		••	
Hydrogen perioxide	20%	••	Trichlorethylene		••	
Hydrosulphide		•••	Turpentine		•••	
lodine tincture		0	Urea		•••	
Iso-octane		•••	Uric acid		•••	
Isopropanol		•••	Urine		•••	
Kaliumpermanganat		0	Vaseline		•••	
Kerosene		•••	Vinegar		•••	
Lactic acid		••	Water		•••	
Magnesium chloride	10%	•••	Wax		•••	
Magnesium chionue					•••	
Mercury		•••	Xylene		•••	
		•••	Zinc chloride	aqueous	•••	

 $\bullet \bullet \bullet \text{ resistant - } \bullet \bullet \text{ limited resistance - } \bullet \text{ not resistant - } O \text{ soluble, greatly affected}$

Chemical resistance

In general, polyamide 12 is resistant to many organic solvents and alkalis. Grilamid is also unaffected by petroleum fractions, oils and fats.

Concentrated acids cause relatively rapid hydrolytic degradation of all polyamides but PA 12 is resistant to dilute mineral acid and most organic acids.

The hydrolysis and environmental stress-cracking resistance of Grilamid are the most significant advantages of Grilamid in comparison to other engineering plastics.

PA 12 has a distinctly higher hydrolysis resistance than PA6 and PA66. The matrix is less hydrophilic, absorbs less water, even at elevated temperatures and, therefore, is less affected by hydrolysis.

The recommendations and data given are based on our experience to date. No liability can be assumed in connection with their usage and processing.

For technical advice please contact our sales engineers. We will be happy to provide further assistance.